Electrochemical Generation of Toxicants and their Application as Chemotherapeutics

Jordache Boudreau

MSc. Defense April 20, 2012



### The Problem



- Significant collateral toxicity encountered in patients undergoing cancer treatment
- Systemic treatments target actively replicating cells (e.g., the cancer, hair, blood, G.I.)
- Treatments must differentiate cancerous and healthy cells via rate of cell division (i.e., cancer: fast, normal: slow)

#### **Treatment of Solid Tumours**

- Surgical excision is preferred, but not always possible
- Inoperable or locally invasive tumours often require surgery, radiation, <u>and</u> chemotherapy
- Can you use a local treatment to treat local disease?

# Localized Chemotherapy

 Localized chemotherapy bypasses systemic circulation

 Use higher <u>local</u> concentrations with smaller amounts of drug vs. conventional therapy

Improves response and quality of life

### **Localized Chemotherapy**



# Localized Chemotherapy

- Mitotic toxicants that interfere with DNA replication are often carcinogenic (*de novo* cancers)
- Intratumour injection allows for use of non-mitotic toxicants
- Systemic use of non-mitotic toxicants would be lethal, as metabolic pathways are ubiquitous in all cells



#### **Drug Activation**



- Allows for some control over distribution of reactive toxicants
- Many anti-cancer drugs are activated through oxidative metabolism (bioactivation; P450s)
- Concept of biomimicry via electrochemistry
- Some anode materials, such as graphite and Ti/RuO<sub>2</sub>, mimic oxidative bioactivation

#### **Drug Activation P450: Electrochemistry:** (A)node + $H_2O$ $Fe^{+2} + O_2 + 2H^+ + 2e^-$ X: Fe<sup>+3</sup>; A X=O 2H<sup>+</sup> + 2e<sup>-</sup> $H_2O$ S • (S)ubstrate is oxidized in similar fashion under both

X + SO

8

contexts!





- To provide proof of concept for a system which is:
  - 1. Capable of electrochemically activating a prodrug into a cytotoxic form;
  - 2. Subsequently using the activated compound against *in vitro* cancer cells

#### **Project Overview**



- 1. Choose cell line and cytotoxicity assay
- 2. Choose model toxicants: determine toxic potency
- 3. Electrochemical characterization of prodrug in batch cell
- 4. Toxicity of electrochemical product in batch cell
- 5. Flow cell design and toxicity of effluent

#### Cell Line and Cytotoxicity Assay



- Mouse mammary adenocarcinoma cell line: EMT-6
- Measure viability colourimetrically (MTS dye); visually confirm death with morphological changes in cells
- Living cells make NAD(P)H → reduces MTS dye → colour change (ox.: yellow; red.: blue) → measure colour change



Model Toxicant: Cyclophosphamide (CP)



- Bioactivated by P450s to give toxic product: the phosphoramide mustard (PM)
- Example of a mitotic toxicant (DNA alkylation)





Model Toxicant: Acetaminophen (AP)



- Bioactivated by P450s to give toxic products: N-acetyl-pbenzoquinonimine (NAPQI) and benzoquinone (BQ)
- Example of a non-mitotic toxicant (denaturation)



### Toxicity: Cyclophosphamide

- CP is non-toxic across the concentrations examined
- Mean +/- SD;
  n=3
- Response relative to untreated controls



#### Toxicity: Acetaminophen



- AP is non-toxic across the concentrations examined.
- Mean +/- SD; n=3
- Response relative to untreated controls







- BQ is toxic across the concentrations examined.
- Mean +/- SD; n=3
- Response relative to untreated controls







• LC<sub>50</sub>: 30 μM; LC<sub>99</sub>: 138 μM

 Cytotoxicity assay causes a 3-fold sample dilution to occur; reflective of tumour dilution

• Therefore, electrolyses are required to produce three times the  $LC_{99}$ : 414  $\mu$ M

#### Acetaminophen Electrolysis: Ti/RuO<sub>2</sub>



25 mM  $SO_4^{-2}$ ; 50 ml Volume; divided batch cell;



25 mM SO<sub>4</sub><sup>-2</sup>; 50 ml volume; divided batch cell;

#### Batch Cell Efficiency (20 mA)



| Anode               | AP (mM)                     | LC <sub>99</sub><br>Time<br>(min)* | BQ <sub>max</sub> (μM) <sup>§</sup> | BQ <sub>max</sub> Yield<br>(%) <sup>¤</sup> | BQ<br>Current<br>Efficiency<br>(%) |
|---------------------|-----------------------------|------------------------------------|-------------------------------------|---------------------------------------------|------------------------------------|
| Graphite            | 1                           | 57                                 | 430                                 | 43.0                                        | 10.4                               |
|                     | 5                           | 11.5                               | 1630                                | 32.6                                        | 23.1                               |
| Ti/RuO <sub>2</sub> | 1                           | > 60                               | 265                                 | 26.5                                        | 1.4                                |
|                     | 5                           | > 60                               | 330                                 | 6.6                                         | 2.1                                |
| *: electrolysis     | s time requ<br>ninutes elec | ired to re                         | each diluted L<br>time              | .C <sub>99</sub> (414 μΜ                    | 1)                                 |

<sup>¤</sup>: BQ concentration as a function of AP lost after 60 min

#### Cyclophosphamide Electrolysis: Graphite

- 500 μM CP,
  5 mA
- 30 min. derivatization
- A: t=30;
  B: t=60;
  C: t=90;
  D: t=120;
  E: t=0
- Same results at Ti/RuO<sub>2</sub> (not shown)





### Electrolysis Toxicity: Acetaminophen

- 20 mA; divided batch cell; 25 mM Na<sub>2</sub>SO<sub>4</sub>
- EMT-6 cell exposure: 24 hours
- Control: 25 mM Na<sub>2</sub>SO<sub>4</sub>





### Electrolysis Toxicity: Cyclophosphamide

- 20 mA; divided batch cell; 25 mM Na<sub>2</sub>SO<sub>4</sub>
- EMT-6 cell exposure: 24 hours
- Control: 25 mM Na<sub>2</sub>SO<sub>4</sub>







#### Flow Cell: Toxicity

000

- 5 mA with graphite
- 1 hr electrolysis time – steady state
- 230 µl/min flow rate
- Control: 25 mM Na<sub>2</sub>SO<sub>4</sub>





Flow Cell: Design Considerations



 Minimum pressure of 18 mg/mm<sup>2</sup> required for flow

- Tight spaces prone to gas bubble accumulation → flow stoppage
- High current densities decompose graphite anode → flow stoppage





- Unelectrolyzed AP and CP are non-toxic to EMT-6 cells
- Both graphite and RuO<sub>2</sub> anodes are capable of oxidizing CP in aqueous solutions
- Graphite oxidizes AP more effectively than RuO<sub>2</sub>
- Constructed flow cell is capable despite limitations







# Electrolyzed solutions produce significant toxicity compared to prodrugs!

# Future Works



- How does it compare to standard treatments?
- 2. Reconsider flow cell design
  - Address ease of use; integration in to existing medical technology (I.V.)
- 3. Investigate suitable toxicants
  - Are CP and AP the best compounds?

# Acknowledgements



- Dr. Nigel Bunce
- Dr. David Josephy (Molecular & Cellular Biology)
- Dr. Alicia Viloria-Petit (Biomedical Science)
- Dr. Dorin Bejan
- Advisory Committee
  - Dr. Jacek LipkowskiDr. Richard Manderville
- Examination committee
  - Dr. France-Isabelle Auzanneau
  - Dr. Mark Baker
- NSERC

#### Anode H<sub>2</sub>O Mechansim



#### P450 Catalysis







3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium, inner salt,



#### **CP** Mechanism



• Here Cl<sup>-</sup> = nucleophile